Abstract

To develop a 3.0 Tesla breast imaging protocol that combines high temporal and spatial resolution three-dimensional MR sequences for quantitative time course and morphologic analysis of breast lesions. Thirty-four patients were included in the study (age range, 31-82; mean age, 54.3). The study protocol was approved by the Institutional Review Board and written informed consent was obtained from all patients. The magnetic resonance imaging protocol included: a coronal T1-weighted volume-interpolated-breathhold-examination sequence, focused on high temporal resolution for optimal assessment of the contrast-enhancement behavior of lesions (SI 1.7 mm isotropic; TA 3.45 minutes for 17 measurements); a coronal T1-weighted turbo fast-low-angle-shot-three-dimensional sequence, with water-excitation and fat suppression, focused on high spatial resolution for morphologic analysis (SI 1 mm isotropic; TA 2 minutes); and a repeated coronal volume-interpolated-breathhold-examination sequence for detection of washout. Lesion size and morphology were assessed. Region-of-interests for suspicious areas were manually drawn and evaluated for contrast-enhancement behavior by plotting intensity courses against time. Sensitivity and specificity with a 95% confidence interval and the negative predictive value and positive predictive value were calculated. Diagnostic accuracy was assessed. The histopathological diagnoses were used as a standard of reference. Fifty-five lesions were detected in 34 patients. All malignant breast lesions were identified correctly. There were 5 false-positive lesions. The sensitivity of contrast-enhanced magnetic resonance imaging of the breast at 3 T was 100%, with a 95% confidence interval (CI) of 90.6% to 100%. The specificity was 72.2%, with a 95% CI of 49.1% to 87.5%. The positive predictive value was 0.88 and the negative predictive value was 1. Diagnostic accuracy was 91% with a 95% CI of 80.4% to 96.1%. Our prospective study demonstrates that the presented 3 Tesla MR imaging protocol, comprising both high temporal and high spatial resolution, enables accurate detection and assessment of breast lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.