Abstract
Here, we experimentally investigate an alternative membrane capacitive deionization (MCDI) system cycle, which aims to reduce the required electrical energy demand for water treatment. The proposed heat and power combined MCDI system utilizes waste heat to control the electrostatic potential of the charged electrodes during the charging (desalination) and discharging (energy recovery) processes. The experimental findings suggest that with an increase in the temperature of the brine from 20 to 50 °C, the electrical energy consumed can be reduced by nearly 10%. We also show that the dependence of electrostatic potential on concentration may limit energy recovery performance (power), when moving toward higher water recoveries. Alternative desalination cycles can be further explored through evaluating non-isothermal and non-adiabatic system operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.