Abstract

Stress-induced hyperglycemia is very common for patients in intensive care units, which can become fatal if left uncontrolled. Blood glucose concentrations for patients at the intensive care units should therefore be monitored at all times. To be successful in monitoring the glucose concentrations of patients, the sensor needs to be fast, accurate and able to measure in real time. In addition, the pH level should be monitored, as a diagnostic parameter by itself, or to improve the reliability of the glucose measurement. To address this challenge, a fiber optic sensor for dual parameter measurement of glucose concentration and pH level for use in point-of-care testing has been developed. The sensor utilizes two stimuli responsive hydrogels to create two interferometers combined on one single mode fiber. The sensor is created by splicing a short section of thin-core fiber (SM450) coated with a pH-sensitive polymer, which constitutes a Mach-Zehnder type interferometer. The glucose is measured with a low finesse Fabry-Perot cavity made by polymerizing a glucose sensitive hydrogel hemisphere at the end face of the fiber. A versatile Fourier transform based, low pass filter was developed, which enable evaluation of the two signals independently. Our results show the feasibility of measuring glucose concentration and pH level by using a single fiber. This dual parameter and single point fiber optic biosensor is expected to be of great interest for in vivo measurements in medical applications where pH and glucose, as specific markers are monitored in real time, during or after surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.