Abstract

An efficient method of synthesis of the vanadium nitride (VN) at low temperature is evaluated, and a mechanism for the crystallization process is proposed in this paper. From the mixture of ammonium m-vanadate with guanidinium carbonate an intermediate, guanidinium m-vanadate (GmV), is produced. GmV decomposed and underwent interesting structural transformations with increasing temperatures. This process is studied by theoretical (periodic DFT calculations) and experimental (51V MAS NMR, XRD, FTIR, and elemental analysis) methods. It is proposed that GmV is first decomposed into reactive species, then through solid-state transformations it is converted into vanadium oxynitride (VOxN1–x) with varying stoichiometry, and, last, GmV transforms itself into crystalline NaCl-type structure vanadium nitride. The DFT calculations show that this transformation is energetically favorable, and the formation of a VOxN1–x solid solution is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.