Abstract
Single crystal of furazolidone (FZL) has been successfully obtained, and its crystal structure has been determined. Common and distinctive features of furazolidone and nitrofurantoin (NFT) crystal packing have been discussed. Combined use of QTAIMC and Hirshfeld surface analysis allowed characterizing the non-covalent interactions in both crystals. Thermophysical characteristics and decomposition of NFT and FZL have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and mass-spectrometry. The saturated vapor pressures of the compounds have been measured using the transpiration method, and the standard thermodynamic functions of sublimation were calculated. It was revealed that the sublimation enthalpy and Gibbs energy of NFT are both higher than those for FZL, but a gain in the crystal lattice energy of NFT is leveled by an entropy increase. The solubility processes of the studied compounds in buffer solutions with pH 2.0, 7.4 and in 1-octanol was investigated at four temperatures from 298.15 to 313.15 K by the saturation shake-flask method. The thermodynamic functions of the dissolution and solvation processes of the studied compounds have been calculated based on the experimental data. Due to the fact that NFT is unstable in buffer solutions and undergoes a solution-mediated transformation from an anhydrate form to monohydrate in the solid state, the thermophysical characteristics and dissolution thermodynamics of the monohydrate were also investigated. It was demonstrated that a combination of experimental and theoretical methods allows performing an in-depth study of the relationships between the molecular and crystal structure and pharmaceutically relevant properties of nitrofuran antibiotics.
Highlights
Nitrofurans (NFs) belong to the class of active pharmaceutical ingredients (APIs) active against both Gram-positive and Gram-negative microorganisms, and are routinely used to treat urinary infections [1]
The free molecular volume in the crystal lattice was calculated on the basis of the single crystal X-ray diffraction data: V f ree = Vmol − Vvdw where Vmol is the molecular volume in crystal lattice, which is estimated by the equation: Vmol = Vcell/Z
The single crystal of furazolidone was obtained by slow solvent evaporation, and the crystal structure was determined from the single crystal X-ray diffraction
Summary
Alex N. Manin 1, Ksenia V. Drozd 1, Alexander P. Voronin 1 , Andrei V. Churakov 2 and German L. Perlovich 1,* Citation: Manin, A.N.; Drozd, K.V.; Voronin, A.P.; Churakov, A.V.; Perlovich, G.L. A Combined Experimental and Theoretical Study of Nitrofuran Antibiotics: Crystal Structures, DFT Computations, Sublimation and Solution Thermodynamics. Molecules 2021, 26, 3444. https://doi.org/10.3390/ molecules26113444
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.