Abstract

As a route to improving the energy conversion of organic-inorganic hybrid-solar cells, we have tested the performance of poly (phenylene vinylene) (PPV), poly(2,5-thienylene vinylene) (PWTV) polymers and CdTe nanocrystal devices produced via aqueous-processing. It is found that small differences in the conformation of the sensitizer lead to dramatic effects on the solar cell efficiency. Using a combination of UV-Vis absorption spectroscopy and first-principles non-adiabatic molecular dynamics (NAMD) based on time-dependent density-functional theory (TDDFT), PPV is found to have a longer electron injection and recombination time despite seeming to have a better energy alignment with the substrate, which leads to a higher devices performance than PWTV. The present results shed new light on the understanding of organic-inorganic hybrid-solar cells and will trigger further experimental and theoretical investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.