Abstract
Gold and copper thin films are widely used in microelectromechanical system (MEMS) and nanoelectromechanical system (NEMS) devices. Nanoindentation has been developed in mechanical characterization of thin films in recent years. Several researchers have examined the effect of surface roughness on nanoindentation results. It is proved that the surface roughness has great importance in nanoindentation of thin films. In this paper, the surface topography of thin films is simulated using the extracted data from the atomic force microscopy (AFM) images. Nanoindentation on a rough surface is simulated using a three-dimensional finite-element model. The results are compared with the results of finite-element analysis on a smooth surface and the experimental results. The results revealed that the surface roughness plays a key role in nanoindentation of thin films, especially at low indentation depths. There was good compatibility between the results of finite-element simulation on the rough surface and those of experiments. It is observed that on rough films, at low indentation depths, the geometry of the location where the nanoindentation is performed is of major importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.