Abstract

BackgroundThe contamination of aquatic ecosystems with both anthropogenic pollutants and particles in particular (microscopic) plastic debris items is of emerging concern. Since plastic particles can accumulate contaminants and potentially facilitate their transport, it is important to properly investigate sorption mechanisms. This is especially required for a large variety of chemicals that can be charged under environmental conditions and for which interactions with particles may hence go beyond mere partitioning.ResultsIn this study, sorption experiments with two types of microplastic particles (polyethylene and polystyrene) and 19 different contaminants (pesticides, pharmaceuticals, and personal care products) were performed at three different pH values. We could show that sorption to plastic particles is stronger for hydrophobic compounds and that neutral species usually contribute more to the overall sorption. Bulk partitioning coefficients were in the same order of magnitude for polyethylene and polystyrene. Furthermore, our results confirm that partition coefficients for polar compounds can only be accurately determined if the solid-to-liquid ratio in batch experiments is more than 6–7 orders of magnitude higher than any plastic concentration detected in the environment. Consequently, only a minor fraction of pollutants in water bodies is associated with microplastics.ConclusionsAlthough neutral species primarily dominate the overall sorption, hydrophobic entities of ionic species cannot be neglected for some compounds. Notwithstanding, our results show that since microplastic concentrations as currently observed in the environment are very low, they are only a relevant sorbent for strongly hydrophobic but not for polar compounds.

Highlights

  • Introduction and backgroundChemical pollution is of emerging concern and has even been considered to be a planetary boundary threat [6, 32]

  • For compounds with slow desorption kinetics, i.e., with high partition coefficients [36], microplastics may act as transport vectors, whereas they act as passive samplers and reflect the ambient concentration of the organic pollutants in the environment as soon as sorption equilibrium is reached

  • The aim of our study was to clarify the sorption behavior to microplastics in freshwater under varying pH of five neutral substances and a set of 14 selected ionizable compounds including pesticides and insecticides, and pharmaceuticals, detergents, and flame retardants that represent trace pollutants emitted via the wastewater treatment plant

Read more

Summary

Introduction

Introduction and backgroundChemical pollution is of emerging concern and has even been considered to be a planetary boundary threat [6, 32]. For compounds with slow desorption kinetics, i.e., with high partition coefficients [36], microplastics may act as transport vectors, whereas they act as passive samplers and reflect the ambient concentration of the organic pollutants in the environment as soon as sorption equilibrium is reached. In both cases, partition coefficients are crucial to calculate (i) characteristic times for contaminant release and (ii) the ambient concentration (e.g., in the water) at the sampling location. Since plastic particles can accumulate contaminants and potentially facilitate their transport, it is important to properly investigate sorption mechanisms This is especially required for a large variety of chemicals that can be charged under environmental conditions and for which interactions with particles may go beyond mere partitioning

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.