Abstract

Often, chiral natural products exist as single stereoisomers; however, simultaneous occurrences of both enantiomers can exist in nature, resulting in scalemic or racemic mixtures. Ascertaining theabsolute configuration (AC) of natural products is pivotal for attributing their specific biological signature. Specific rotation data commonly characterize chiral non-racemic natural products; however, measurement conditions, viz., solvent and concentration, can influence the sign of specific rotation values, especially when characterizing natural products possessing small values. For example, licochalcone L, a minor constituent of Glycyrrhiza inflata, was reported with a specific rotation of [α]D22= +13 (c 0.1, CHCl3); however, not establishing the AC and the reported zero specific rotation for an identical compound, licochalcone AF1, resulted in debatable chirality and its biogenesis. In this study, a combined experimental and computational chiroptical approach involving specific rotation and electronic circular dichroism (ECD) data, supported by time-dependent density functional theory (TDDFT), were effectively utilized to establish the AC of licochalcone L as the (E, 2″S)-isomer. Establishing the 2″S absolute configuration permitted the conception of a reasonable biosynthetic pathway involving intramolecular ‘5-exo-tet’ ring opening of a chiral oxirane to form chiral licochalcone L in G. inflata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.