Abstract

A general method to develop accurate force fields from density functional theory (DFT) computations in periodic systems is here presented. The novelty of the method consists of the inclusion of both potential energy and forces in the same fit, by using an automated procedure to balance the relative weight of the two quantities. A thorough analysis of the method capabilities is carried out by modeling the dispersion interactions of argon adsorbed in ZIF-8. While a pure energy fit leaves the parameters of some atoms kinds underdetermined, a pure forces fit gives well converged results but fails in properly reproducing the potential energy of the system. The optimal solution is found when a small contribution of forces is included in the energy fit: this allows one to fuse together the best features of the two fits, giving converged results and good reproduction of both energy and forces. The force field parameters for various DFT functionals, namely, DFT-D2, DFT-D3, vdW-DF2, and rVV10, are derived, and the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.