Abstract

Roadside air pollution monitoring stations have become frequently available for street canyons. To efficiently estimate source location and emission profile in street canyons, this study developed a combined deep learning and physical modelling method using the monitoring data as inputs. First, a deep neural network (DNN) was constructed for locating the source. The training datasets were generated from numerical simulations by the computational fluid dynamics (CFD)-Markov chain model. An inverse method based on Tikhonov regularization was then used to estimate the emission profile. Finally, the Markov chain model was used to calculate the air pollutant distribution in the whole street canyon. Case studies were conducted to demonstrate the performance of the proposed method. For the unit impulse source in the 2-D ventilated chamber of 27 m2, the source in 83% of the cases were accurately identified, and in another 13% of the cases, the identified source was within 0.4 m to the true location. For the continuous pollutant source with varying emission profile in the 3-D street canyon with an area of 25,600 m2, the source in 36% of the cases were accurately located, and in another 52% of the cases, it was within 10 m from the true location.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call