Abstract
Salicylic acid decarboxylase (SDC) from the amidohydrolase superfamily (AHS) catalyzes the reversible decarboxylation of salicylic acid to form phenol. In this study, the substrate binding mode and reaction mechanism of SDC were investigated using computational and crystallographic methods. Quantum chemical calculations show that the enzyme follows the general mechanism of AHS decarboxylases. Namely, the reaction begins with proton transfer from a metal-coordinated aspartic acid residue (Asp298 in SDC) to the C1 of salicylic acid, which is followed by the C–C bond cleavage, to generate the phenol product and release CO2. Interestingly, the calculations show that SDC is a Mg-dependent enzyme rather than the previously proposed Zn-dependent, and the substrate is shown to be bidentately coordinated to the metal center in the catalysis, which is also different from the previous proposal. These predictions are corroborated by the crystal structure of SDC solved in complex with the substrate analogue 2-nitrophenol. The mechanistic insights into SDC in the present study provide important information for the rational design of the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.