Abstract
Biomaterial scaffolds have been increasingly used for tissue engineering applications as well as three dimensional (3D) cell culture models. Herein, we report a simple procedure combining compression molding, heating, and leaching methods for the fabrication of 3D micro-porous poly(ε-caprolactone) (PCL) biomaterial scaffolds. In this procedure, PCL micro particles are mixed with NaCl of defined sizes and compression molded, followed by heating and subsequent leaching of NaCl particles. This technique eliminates the gas foaming method, which is commonly used in the fabrication of PCL scaffolds. Process and scaffold parameters (i.e., heating time, NaCl concentration, and NaCl particle size) were varied and analyzed to determine their impact on the overall scaffold structural and mechanical properties. An increase in NaCl particle size led to an increase in pore area but did not significantly impact the mechanical properties of the scaffolds. Additionally, NaCl concentration did not show a significant effect on pore area, but considerably impacted the mechanical properties, water absorption capacity and porosity of the scaffolds. Variations in the heating time did not have an effect in the pore area, porosity, water absorption capacity or mechanical properties of the scaffolds. We also demonstrated the ability of these scaffolds to support the proliferation of breast cancer cells. Overall, these results elucidated structure-property relationships in the fabricated micro-porous PCL scaffolds. Further, this procedure could be potentially scaled up for the fabrication of micro-porous PCL scaffolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.