Abstract
* Corresponding author Abstract—The co-location pattern mining discovers the subsets of spatial features which are located together frequently in geography. However, the huge number of the co-location mining results limit the usability of co-location patterns. Furthermore, users hardly identify and understand the interesting knowledge directly from the single co-location pattern.In this paper, we studied the problem of extractingcombined co-location patterns from a large collectionof prevalent co-location patterns.We first gave the definitions of atomic co-location pattern, combined co-location pattern pair and cluster; secondly, we designed a series of interesting metrics to measure the interestingness of atomic co-location patterns, combined co-location pattern pairs and clusters; thirdly, an combined co-location mining algorithm and redundant elimination strategies were proposed. The experiments evaluated the method both on real data sets and syntheticdata sets. The results show that our method can effectively discover combined co-location patterns. Keywords-co-location pattern mining; combined mining; post-analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.