Abstract
Techniques for obtaining safely positive definite Hessian approximations with self-scaling and modified quasi-Newton updates are combined to obtain `better' curvature approximations in line search methods for unconstrained optimization. It is shown that this class of methods, like the BFGS method, has the global and superlinear convergence for convex functions. Numerical experiments with this class, using the well-known quasi-Newton BFGS, DFP and a modified SR1 updates, are presented to illustrate some advantages of the new techniques. These experiments show that the performance of several combined methods are substantially better than that of the standard BFGS method. Similar improvements are also obtained if the simple sufficient function reduction condition on the steplength is used instead of the strong Wolfe conditions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.