Abstract
A clear relationship between the tau assemblies and toxicity has still to be established. To correlate the tau conformation with its proteotoxic effect in vivo, we developed an innovative cell-worm-based approach. HEK293 cells expressing tau P301L under a tetracycline-inducible system (HEK T-Rex) were employed to produce different tau assemblies whose proteotoxic potential was evaluated using C. elegans. Lysates from cells induced for five days significantly reduced the worm’s locomotor activity. This toxic effect was not related to the total amount of tau produced by cells or to its phosphorylation state but was related to the formation of multimeric tau assemblies, particularly tetrameric ones. We investigated the applicability of this approach for testing compounds acting against oligomeric tau toxicity, using doxycycline (Doxy) as a prototype drug. Doxy affected tau solubility and promoted the disassembly of already formed toxic aggregates in lysates of cells induced for five days. These effects translated into a dose-dependent protective action in C. elegans. These findings confirm the validity of the combined HEK T-Rex cells and the C. elegans-based approach as a platform for pharmacological screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.