Abstract

BackgroundLactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass.ResultsTo optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods.ConclusionsBy developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.Electronic supplementary materialThe online version of this article (doi:10.1186/1754-6834-7-112) contains supplementary material, which is available to authorized users.

Highlights

  • Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass

  • The cell-consortium approach was employed to assess the significance of enzyme localization in biomass deconstruction by comparing the three different enzymatic paradigms: (i) a secreted enzyme system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes

  • Further improvement of L. plantarum as a lignocellulolytic bacterium could lead to optimal biomass bioprocessing schemes, appropriate for immediate industrial acceptance

Read more

Summary

Introduction

Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). The degradation of the plant cell wall is carried out by a variety of different cellulolytic microorganisms, by using cellulases and associated carbohydrate-active enzymes, such as xylanases and other glycoside hydrolases, carbohydrate esterases and polysaccharide lyases [1] These enzymes are employed in various recognized paradigms [2]. The complement of enzymes may be integrated into highly efficient complexes called cellulosomes (produced by anaerobic bacteria) that are composed of numerous functional protein modules which interact with each other (via cohesin-dockerin interactions) and with the substrate (via carbohydrate-binding modules), in order to synergistically degrade lignocellulosic biomass These enzymatic paradigms have individually been the subject of extensive research and engineering to augment the action of natural systems in the intricate degradation of plant cell walls [5,6]. In order to develop a consolidated bioprocessing organism, cellulases or xylanases have been displayed on yeast cells [13,14,15,16,17]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.