Abstract

In this paper, we study the application of a meta-heuristic to a two-machine flowshop scheduling problem. The meta-heuristic uses a branch-and-bound procedure to generate some information, which in turn is used to guide a genetic algorithm's search for optimal and near-optimal solutions. The criteria considered are makespan and average job flowtime. The problem has applications in flowshop environments where management is interested in reducing turn-around and job idle times simultaneously. We develop the combined branch-and-bound and genetic algorithm based procedure and two modified versions of it. Their performance is compared with that of three algorithms: pure branch-and-bound, pure genetic algorithm, and a heuristic. The results indicate that the combined approach and its modified versions are better than either of the pure strategies as well as the heuristic algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.