Abstract

The extractive industry is increasingly faced with problems of managing contaminated sites. The red gypsum landfill at the Ochsenfeld site is representative of the typology byproduct storage of the Ti-extraction activity. The management of the elemental content and the water body are the issues at this site. The aim of this study was to evaluate the canopy conductance (gcmax) of various tree species and the content of elements in the leaves, utilizing the opportunity of a demonstration plantation setup in 2014 with sixteen tree species, combined with a growth chamber experiment. We combined the gas exchange measurements with the data from two multispectral cameras with RGB and NIR bands embarked on an unmanned aerial vehicle (UAV). In the field, Ostrya carpinifolia, Maclura pomifera, and Rhus copallina had the highest gcmax of all planted tree species, and the high transpiration rate in O. carpinifolia was confirmed in a pot-based controlled experiment. Except R. copallina, the species with a high Mn content (O. carpinifolia, Betula pendula, and Salix aquatica grandis) had high stomatal conductance. O. carpinifolia could therefore be a species to exploit in the management of landfill leachates, especially in the context of climate change since this species is well adapted to dry environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.