Abstract

Teeth detection and tooth segmentation are essential for processing Cone Beam Computed Tomography (CBCT) images. The accuracy decides the credibility of the subsequent applications, such as diagnosis, treatment plans in clinical practice or other research that is dependent on automatic dental identification. The main problems are complex noises and metal artefacts which would affect the accuracy of teeth detection and segmentation with traditional algorithms. In this study, we proposed a teeth-detection method to avoid the problems above and to accelerate the operation speed. In our method, (1) a Convolutional Neural Network (CNN) was employed to classify layer classes; (2) images were chosen to perform Region of Interest (ROI) cropping; (3) in ROI regions, we used a YOLO v3 and multi-level combined teeth detection method to locate each tooth bounding box; (4) we obtained tooth bounding boxes on all layers. We compared our method with a Faster R-CNN method which was commonly used in previous studies. The training and prediction time were shortened by 80% and 62% in our method, respectively. The Object Inclusion Ratio (OIR) metric of our method was 96.27%, while for the Faster R-CNN method, it was 91.40%. When testing images with severe noise or with different missing teeth, our method promises a stable result. In conclusion, our method of teeth detection on dental CBCT is practical and reliable for its high prediction speed and robust detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call