Abstract

High-chloride leachate is a solution rich in precious metals that is produced in chloride hydrometallurgy. It has high levels of both rare and precious metals and hazardous chloride ions, and resource recovery from this solution and its safe disposal have become key objectives in the field of hydrometallurgy. In this study, a sustainable process involving "ultrasound-assisted precipitation–Pb powder cementation" was proposed for the stepwise separation and high-value utilization of Bi, Au and Ag obtained from high-chloride leachate. Targeted separation and conversion of Bi were achieved by precipitation–re-acid hydrolysis–ultrasonication-assisted coprecipitation–centrifugal purification. Under the optimal process conditions, the removal rate of Bi reached 99.52%, while the loss rates of Au and Ag were only 4.63% and 8.72%, respectively. Single-factor experiments of Au and Ag cementation by Pb powder showed that the recovery rates of precious metals could be improved by increasing the temperature, raising the solution pH, and applying mechanical force and ultrasonication. A possible reaction mechanism for Au and Ag cementation with Pb powder was proposed based on macroscopic kinetic analysis and microscopic mineral characterization. This work provides technical support and a theoretical basis for the separation and enrichment of rare and precious metals in chloride hydrometallurgy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call