Abstract
BackgroundWe successfully captured a kind of gelatinous organism DA-6 from Antarctic water, extracted its total RNAs and proteins, and performed species identification through a combination of transcriptomics and proteomics in this study. MethodsThe gelatinous organism DA-6 was captured 200 m underwater in Antarctica. Total RNA was extracted to construct the transcriptome and the proteins were identified by LC-MS/MS. ResultsDA-6 was identified as an Antarctic Salpa sp. through morphological examination and MT-CO1 phylogenetic analysis. A total of 47,183 unigenes were harvested through transcriptome. We also successfully annotated 11,954 (25.34%), 10,006 (22.21%), 4469 (9.47%) and 4901 (9.71%) unigenes with NR, SwissProt, GO and KEGG databases, respectively. In the proteomic analysis, a total of 4680 peptides and 1280 proteins were harvested using the transcriptome as the reference database. A number of both 549 (31.98%) proteins reannotated against the GO and KEGG databases. Moreover, a number of 5 toxic proteins matched from the 89 toxin-related unigenes were successfully screened, including 2 metalloproteinases, 1 serine protease, 1 serine protease inhibitor and 1 aflatoxin. ConclusionOur study is the first to identify an Antarctic Salpa sp. according to the combination of de novo transcriptomics and proteomics, which can further be served as a public database for the identification of potential polar Salpa-derived lead compounds. In addition to morphology and CO1, the combined analysis of transcriptome and proteome can also be used as a value method for new species identify e.g. Salpa sp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.