Abstract

Crack propagation is modelled in this contribution by combining different methods. The main idea is to use the newly developed virtual element method in combination with the phase-field methodology and a specific cutting technology. The idea is that the direction of a crack path can be easily predicted using the phase-field method. However this method needs a very fine mesh to resolve a real crack and thus this method has to be coupled with an adaptive approach. Due to the flexible virtual element method that allows to add arbitrary number of nodes to an element a robust cutting technique can be used to replace the refined mesh by a discrete crack. In total this combination of different methods allows a very efficient and robust solution of crack growth in solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.