Abstract

A combination process of Fenton-like and catalytic Mn(II) oxidation via molecular oxygen-induced abio-oxidation of As(III)-Mn(II)-rich acid mine drainage (AMD) is developed to rapidly and efficiently remove As and obtain low As-leaching solids in this study. The effect of pH, temperature, oxygen flow rate and neutralization reagent on As removal was investigated. The results showed that pH was important to As removal efficiency, which achieved maximum in 0.25–2 h, but decreased from ∼100 % to ∼92.6 % with the increase of pH 5–9. pH, temperature and oxygen flow rate played key roles in As(III) oxidation. The increase of As(III) oxidized from 16.8 to 67.1% to 98.6–99.0 % occurred as increasing the pH 5–9, 25–95 °C and oxygen flow rate of 0–2.4 L min−1. NaOH or Ca(OH)2 as base was less important to As removal. The mechanism involved Fenton-like reaction between Fe(II) and O2 for produced Fe(III) (oxy)hydroxide association with As(III + V) and Mn(II), catalytic Mn(II) oxidation for the formation of Mn(III, IV) oxides, and further As(III) oxidation by Mn(III, IV) oxides. As-bearing six-line ferrihydrite was the main solid product for low As-leaching fixation. pH 8, 95 °C and oxygen flow rate of 1.6 L min−1 were optimal for As removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.