Abstract

Plant introns are typically AU-rich or U-rich, and this feature has been shown to be important for splicing. In maize, however, about 20% of the introns exceed 50% GC, and most of them are efficiently spliced. A series of constructs has been designed to analyze the cis requirements for splicing of the GC-rich Bz2 maize intron and two other GC-rich intron derivatives. By manipulating exon, intron and splice site sequences it is shown that exons can play an important role in intron definition: changes in exon sequences can increase splicing efficiency of a GC-rich intron from 17% to 86%. The relative difference, or base compositional contrast, in GC and U content between exon and intron sequences in the vicinity of splice sites, rather than the absolute base-content of the intron or exons, correlates with splicing efficiency. It is also shown that GC-rich intron constructs that are poorly spliced can be partially rescued by an improved 3' splice site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.