Abstract

Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may be problematic with regard to biologic treatment strategies. Hence, gene therapeutic interventions regulating relevant bioactive factors identified in this work might contribute to the development of regenerative treatment approaches for degenerative disc diseases.

Highlights

  • Painful degenerative disc diseases, frequently caused by genetic predisposition, have been targeted by different biological treatment approaches [1,2]

  • Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) matrix maintenance by orchestrating several catabolic, anabolic and inflammatory factors that affect the extracellular matrix [3,4]

  • Scoring of spinal disc degeneration was based on magnetic resonance imaging (MRI) findings according to the Pfirrmann scoring system [18]

Read more

Summary

Introduction

Frequently caused by genetic predisposition, have been targeted by different biological treatment approaches [1,2]. These include the administration of growth factors, the application of autologous or allogenic cells, gene therapy, in situ therapy and the introduction of biomaterials or a combination thereof. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) matrix maintenance by orchestrating several catabolic, anabolic and inflammatory factors that affect the extracellular matrix [3,4]. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call