Abstract

Hybrid Electric Vehicles are becoming more and more prevalent for economic and environmental reasons. Many studies have been conducted in order to improve Hybrid Electric Vehicle performance by increasing their autonomy while respecting the power demand of the electric motor and various constraints. Focusing on the Hybrid Electric Vehicle energy management problem, different approaches and strategies already exist based on non-linear modelling, selection of adequate architecture and source design or the expertise of the manufacturer in the domain. In this paper, a new combinatorial approach is presented to optimally manage offline Hybrid Electric Vehicle energy distribution, composed of two energy sources: a fuel cell as a main source and a super-capacitor for energy storage. New mathematical modelling has been developed that reflects the functioning of the Hybrid Electric Vehicle energy chain, using an exact method to provide an optimal solution that corresponds to hydrogen consumption. Simulations were performed on different realistic mission profiles that showed a significant gain in solution quality and computation time compared with other approaches presented in the literature. Since the quality of solutions depends on the reliability of input data, including disruptions, a robustness study also is carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.