Abstract

ABSTRACTStorage reliability that measures the ability of products in a dormant state to keep their required functions is studied in this paper. Unlike the operational reliability, storage reliability for certain types of products may not be always 100% at the beginning of storage since there are existing possible initial failures that are normally neglected in the models of storage reliability. In this paper, a new combinatorial approach, the nonparametric measure for the estimates of the number of failed products and the current reliability at each testing time in storage, and the parametric measure for the estimates of the initial reliability and the failure rate based on the exponential reliability function, is proposed for estimating and predicting the storage reliability with possible initial failures. The proposed method has taken into consideration that the initial failure and the reliability testing data, before and during the storage process, are available for providing more accurate estimates of both initial failure probability and the probability of storage failures. When storage reliability prediction that is the main concern in this field should be made, the nonparametric estimates of failure numbers can be used into the parametric models for the failure process in storage. In the case of exponential models, the assessment and prediction method for storage reliability is provided in this paper. Finally, numerical examples are given to illustrate the method. Furthermore, a detailed comparison between the proposed method and the traditional method, for examining the rationality of assessment and prediction on the storage reliability, is presented. The results should be useful for planning a storage environment, decision-making concerning the maximum length of storage, and identifying the production quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.