Abstract

Users and providers have different requirements and objectives in an investment market. Users will pay the lowest price possible with certain guaranteed levels of service at a minimum and providers would follow the strategy of achieving the highest return on their investment. Designing an optimal market-based resource allocation that considers the benefits for both the users and providers is a fundamental criterion of resource management in distributed systems, especially in cloud computing services. Most of the current market-based resource allocation models are biased in favor of the provider over the buyer in an unregulated trading environment. In this study, the problem was addressed by proposing a new market model called the Combinatorial Double Auction Resource Allocation (CDARA), which is applicable in cloud computing environments. The CDARA was prototyped and simulated using CloudSim, a Java-based simulator for simulating cloud computing environments, to evaluate its efficiency from an economic perspective. The results proved that the combinatorial double auction-based resource allocation model is an appropriate market-based model for cloud computing because it allows double-sided competition and bidding on an unrestricted number of items, which causes it to be economically efficient. Furthermore, the proposed model is incentive-compatible, which motivates the participants to reveal their true valuation during bidding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.