Abstract

In this paper, we present a novel hybrid classification model with fuzzy clustering and design a newly combinatorial classifier for error-data in joining processes with diverse-granular computing, which is an ensemble of a naïve Bayes classifier with fuzzy c-means clustering. And we apply it to improve classification performance of traditional hard classifiers in more complex real-world situations. The fuzzy c-means clustering is applied to a fuzzy partition based on a given propositional function to augment the combinatorial classifier. This strategy would work better than a conventional hard classifier without fuzzy clustering. Proper scale granularity of objects contributes to higher classification performance of the combinatorial classifier. Our experimental results show the newly combinatorial classifier has improved the accuracy and stability of classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.