Abstract

We investigate the combinatorial properties of threshold schemes. Informally, a (t, w)-threshold scheme is a way of distributing partial information (shadows) to w participants, so that any t of them can easily calculate a key, but no subset of fewer than t participants can determine the key. Our interest is in perfect threshold schemes: no subset of fewer than t participants can determine any partial information regarding the key. We give a combinatorial characterization of a certain type of perfect threshold scheme. We also investigate the maximum number of keys which a perfect (t, w)-threshold scheme can incorporate, as a function of t, w, and the total number of possible shadows, v. This maximum can be attained when there is a Steiner system S(t, w, v) which can be partitioned into Steiner systems S(t − 1. w, v). Using known constructions for such Steiner systems, we present two new classes of perfect threshold schemes, and discuss their implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call