Abstract

In this paper, we investigate a generalization of the classical Stirling numbers of the first kind by considering permutations over tuples with an extra condition on the minimal elements of the cycles. The main focus of this work is the analysis of combinatorial properties of these new objects. We give general combinatorial identities and some recurrence relations. We also show some connections with other sequences such as poly-Cauchy numbers with higher level and central factorial numbers. To obtain our results, we use pure combinatorial arguments and classical manipulations of formal power series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.