Abstract

Label-free quantification is an important approach to identify biomarkers, as it measures the quantity change of peptides across different biological samples. One of the fundamental steps for label-free quantification is to match the peptide features that are detected in two datasets to each other. Although ad hoc software tools exist for the feature matching, the definition of a combinatorial model for this problem is still not available. A combinatorial model is proposed in this article. Each peptide feature contains a mass value and a retention time value, which are used to calculate a matching weight between a pair of features. The feature matching is to find the maximum-weighted matching between the two sets of features, after applying a to-be-computed time alignment function to all the retention time values of one set of the features. This is similar to the maximum matching problem in a bipartite graph. But we show that the requirement of time alignment makes the problem NP-hard. Practical algorithms are also provided. Experiments on real data show that the algorithm compares favorably with other existing methods. binma@uwaterloo.ca Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.