Abstract

Motivation: High-throughput sequencing of tumor samples has shown that most tumors exhibit extensive intra-tumor heterogeneity, with multiple subpopulations of tumor cells containing different somatic mutations. Recent studies have quantified this intra-tumor heterogeneity by clustering mutations into subpopulations according to the observed counts of DNA sequencing reads containing the variant allele. However, these clustering approaches do not consider that the population frequencies of different tumor subpopulations are correlated by their shared ancestry in the same population of cells.Results: We introduce the binary tree partition (BTP), a novel combinatorial formulation of the problem of constructing the subpopulations of tumor cells from the variant allele frequencies of somatic mutations. We show that finding a BTP is an NP-complete problem; derive an approximation algorithm for an optimization version of the problem; and present a recursive algorithm to find a BTP with errors in the input. We show that the resulting algorithm outperforms existing clustering approaches on simulated and real sequencing data.Availability and implementation: Python and MATLAB implementations of our method are available at http://compbio.cs.brown.edu/software/Contact: braphael@cs.brown.eduSupplementary information: Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.