Abstract

The desulfurization by seawater and mineral carbonation have been paid more and more attention. In this study, the feasibility of magnesia and seawater for the integrated disposal of SO2 and CO2 in the simulated flue gas was investigated. The process was conducted by adding MgO in seawater to reinforce the absorption of SO2 and facilitate the mineralization of CO2 by calcium ions. The influences of various factors, including digestion time of magnesia, reaction temperature, and salinity were also investigated. The results show that the reaction temperature can effectively improve the carbonation reaction. After combing SO2 removal process with mineral carbonation, Ca2+ removal rate has a certain degree of decrease. The best carbonation condition is to use 1.5 times artificial seawater (the concentrations of reagents are 1.5 times of seawater) at 80°C and without digestion of magnesia. The desulfurization rate is close to 100% under any condition investigated, indicating that the seawater has a sufficient desulfurization capacity with adding magnesia. This work has demonstrated that a combination of the absorption of SO2 with the absorption and mineralization of CO2 is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.