Abstract

Seasonal and occupational exposure of the human body to extreme cold temperatures can result in cell death in the exposed area due to the formation of ice crystals. This leads to superficial or deep burn injury and compromised functionality. Currently available therapeutics can be ineffective in extreme cases, and thus, it is necessary to develop prophylactic strategies. In this study, we have devised a combination of known synthetic cryopreservative agents (termed SynAFP) and evaluated their potential antifreeze applications on skin. The prophylactic activity of SynAFP in vitro is indicated by improved cellular revival and cell viability, retention of the cytoskeleton, and normal cell cycle progression even after cold stress. A comprehensive whole-cell proteomic approach revealed that in the presence of SynAFP, cold-induced downregulation of proteins involved in cell-cell adhesion and upregulation of those related to mitochondrial stress were ameliorated. Pre-application of SynAFP in mice facing a frostbite challenge prevents their skin from incurring significant injury as confirmed through macroscopic and histological examination. Moreover, multiple applications of SynAFP on mouse skin at room temperature did not compromise skin integrity. SynAFP was also formulated in anAloe vera-based cream (referred to as fSynAFP), which offered similar protection under cold stress conditions. Thus, SynAFP can be considered as a potential candidate for formulating a topical intervention for protection from cold-induced injuries to skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.