Abstract

Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well.

Highlights

  • Cardiovascular diseases are the leading cause of death in the developed world and are on course to be emerging as the major cause of death in the developing world [1]

  • Four different 3D structures of chymase bound with its inhibitors such as 3N7O, 1T31, 3SON, and 2HVX were selected as input for structure-based pharmacophore generation [9,32,33,34]

  • For 3N7O complex, the generated structure-based pharmacophore model (SB_Model1) identified five functional features along with 20 excluded volume spheres, including one HBD pointed towards Ser214, one NI pointed to Lys40, and three HY centers pointed towards Tyr215, Gly216, and Leu99 amino acids, respectively

Read more

Summary

Introduction

Cardiovascular diseases are the leading cause of death in the developed world and are on course to be emerging as the major cause of death in the developing world [1]. One particular manifestation of cardiovascular diseases, heart failure (HF), is dramatically increasing in frequency. A link between heart failure and chymase has been ascribed, and there is an interest to develop a specific chymase inhibitor as a new therapeutic regimen for the disease [2]. Chymase (EC 3.4.21.39) which is a chymotrypsin-like enzyme expressed in the secretory granule of mast cells, catalyzes the production of angiotensin I (Ang I) to angiotensin II (Ang II) in vascular tissues [3]. Conversion of Ang I to Ang II is catalyzed by well-known angiotensin-converting enzyme (ACE), which is a metallo-proteinase with dipeptidyl-carboxypeptidase activity. Chymase catalyzes the production of Ang II in vascular tissues even when ACE is blocked (Figure 1)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call