Abstract

A novel methodology is proposed for the numerical computation of pressure-driven gravity-stratified flows along channels comprising two immiscible phases. The parabolized Navier–Stokes equations are combined with the level set approach, resulting into a downstream-marching problem in which the solution is computed at each cross-section based on upstream information only. A main difficulty in the implementation of the approach for internal flows is the conservation of the mass flow rates, which is addressed by extending to two-phase flows the method proposed by Patankar and Spalding (1972) and Raythby and Schneider (1979), and by adding an explicit forcing term in the equation for the advection of the level function. The combination of high-order finite differences and sparse storage and algebra used here allows a fully-coupled integration of the parabolized equations, as opposed to the more classical segregated approaches. This enables a very efficient calculation of the complete downstream-developing flow field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call