Abstract
BackgroundExploratory eye movements (EEMs) and P300 are often used to facilitate the clinical diagnosis of depression. However, There were few studies using the combination of EEMs and P300 to build a model for detecting depression and predicting a curative effect. MethodsSixty patients were recruited for 2 groups: high frequency repetitive transcranial magnetic stimulation(rTMS) combined with paroxetine group and simple paroxetine group. Clinical efficacy was evaluated by the Hamilton Depression scale-24(HAMD-24), EEMs and P300. The classification model of the auxiliary diagnosis of depression and the prediction model of the two treatments were developed based on a machine learning algorithm. ResultsThe classification model with the greatest accuracy for patients with depression and healthy controls was 95.24% (AUC = 0.75, recall = 1.00, precision = 0.95, F1-score = 0.97). The root mean square error (RMSE) of the model for predicting the efficacy of high frequency rTMS combined with paroxetine was 3.54 (MAE [mean absolute error] = 2.56, R2 = -0.53). The RMSE of the model for predicting the efficacy of paroxetine was 4.97 (MAE = 4.00, R2 = -0.91). ConclusionBased on the machine learning algorithm, P300 and EEMs data was suitable for modeling to distinguish depression patients and healthy individuals. However, it was not suitable for predicting the efficacy of high frequency rTMS combined with paroxetine or to predict the efficacy of paroxetine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.