Abstract

Physiological adaptation to the hyperosmolar milieu of the renal medulla involves a complex series of signaling and gene expression events in which NaCl and urea activate different cellular processes. In the present study, we evaluated the effects of NaCl and urea, individually and in combination, on the viability of murine inner medullary collecting duct (mIMCD3) cells. Exposure to hyperosmolar NaCl or urea caused comparable dose- and time-dependent decreases in cell viability, such that 700 mosmol/kgH2O killed >90% of the cells within 24 h. In both cases, cell death was an apoptotic event. For NaCl, loss of viability at 24 h paralleled decreases in RNA and protein synthesis at 4h, whereas lethal doses of urea had little or no effect on these biosynthetic processes. Cell cycle analysis showed both solutes caused a slowing of the G2/M phase. Surprisingly, cells exposed to a combination of NaCl + urea were significantly more osmotolerant such that 40% survived 900 mosmol/kgH2O. Madin-Darby canine kidney cells but not human umbilical vein endothelial cells also exhibited a similar osmotolerance response. Enhanced survival was not associated with a restoration of normal biosynthetic rates or cell cycle progression. However, the combination of NaCl + urea resulted in a shift in Hsp70 expression that appeared to correlate with survival. In conclusion, hyperosmolar NaCl and urea activate independent and complementary cellular programs that confer enhanced osmotolerance to renal medullary epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.