Abstract

Antibody-drug conjugates (ADCs) represent the forefront of the next generation of biopharmaceuticals. An ADC typically comprises an antibody covalently linked to a cytotoxic drug via a linker, resulting in a highly heterogeneous product. This study focuses on the analysis of a custom-made cysteine-linked ADC. Initially, we developed a LC-MS-based characterization workflow using brentuximab vedotin (Adcetris®), encompassing native intact MS, analysis of reduced chains and subunits under denaturing condition, peptide mapping and online strong cation exchange chromatography coupled with UV and mass spectrometry detection (SCX-UV-MS) applied for brentuximab vedotin first time reported. Subsequently, we applied this in-depth characterization workflow to a custom-made cysteine-linked ADC. The measured drug-to-antibody ratio(DAR) of this ADC is 6.9, further analysis shown that there is a small amount of unexpected over-conjugation. Over-conjugation sites were successfully identified using multiple UHPLC-MS based characterization techniques. Also, one competitively cysteine-conjugated impurity was observed in native intact MS results, by combing native intact MS, reduced chains, subunit analysis and peptide mapping results, the impurity conjugation sites were also identified. Since this molecule is at early development stage, this provides important information for conjugation process improvement and link-drug material purification. SCX-UV-MS approach can separate the custom-made cysteine-linked ADC carrying different payloads and reduce the complexity of the spectra. The integrated approach underscores the significance of combining the SCX-UV-MS online coupling technique with other characterization methods to elucidate the heterogeneity of cysteine-linked ADCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call