Abstract

An extensive cropland soil investigation was conducted to determine the pollution thresholds and hazardous zones of heavy metals (HMs) in the Guanzhong Plain, by using an integrated approach that combines finite mixture distribution model (FMDM) and geo-statistical analysis. FMDM results demonstrated that Pb, Cr, Ni, and Cu were fitted by binary mixture distributions representing the background and moderate pollution distributions, and Zn was fitted by a triple mixture distribution representing the background, moderate and high contamination distributions. The moderate pollution thresholds of Pb, Cr, Ni, Zn and Cu calculated by FMDM were 29.75, 80.15, 38.60, 81.48 and 27.10 mg kg−1, whereas the cutoff value of Zn high contamination was 97.49 mg kg−1. The moderately polluted thresholds of all five HMs were higher than their background values in the study area, and lower than the corresponding national standards. The indicator kriging simulation showed Pb, Cr, Ni, Zn had <0.1%, 2.6%, <0.1%, 2.9% of total areas exceed contamination cutoff values, whereas the hazardous area of Cu was contiguous, and covered 17.3% of the total area. Overall, 17.5% of the total area surpassed the moderate contamination threshold. The pollution hot spots and hazardous zones of soil HMs were located in the southern part of the Guanzhong Plain, where population and industrial activities are centralized, indicating that anthropogenic activities played a critical role in HMs accumulation in high-risk regions. The combination of geo-statistical and FMDM delineate the thresholds and hazardous area for HMs pollution reliably, and facilitate the improvement of soil environmental management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.