Abstract

In this paper, we propose a three-phased method for diagnosis of Alzheimer's disease using the structural magnetic resonance imaging (MRI). In first phase, gray matter tissue probability map is obtained from every brain MRI volume. Further, five regions of interest (ROIs) are extracted as per prior knowledge. In second phase, features are extracted from each ROI using 3D dual-tree discrete wavelet transform. In third phase, relevant features are selected using minimum redundancy maximum relevance features selection technique. The decision model is built with features so obtained, using a classifier. To evaluate the effectiveness of the proposed method, experiments are performed with four well-known classifiers on four data sets, built from a publicly available OASIS database. The performance is evaluated in terms of sensitivity, specificity and classification accuracy. It was observed that the proposed method outperforms existing methods in terms of all three performance measures. This is further validated with statistical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.