Abstract
Infection with Toxoplasma gondii causes morbidity and mortality in congenitally infected and immunocompromised individuals. Both humoral and cell-mediated immunity are involved in host resistance to invasion of the parasite. Among putative vaccine candidates, the T. gondii microneme proteins appear to be promising, because they are responsible for the invasion process. The present work focused on studying the immunogenicity of microneme proteins in infected individuals and in a mouse model of chronic toxoplasmosis. We identified 5 distinct antigenic regions within MIC2, MIC4, MIC2-associated protein, and apical membrane antigen 1 gene products, which were recognized by (1) T cells from both adults with acquired infection and children with congenital infection and (2) antibodies from all patients. Finally, we demonstrated that DNA immunization with microneme fragments elicited effective protection in mice (84% reduction in brain-cyst burden), suggesting that a combination of these antigenic regions should be considered in the design of potential vaccines against toxoplasmosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.