Abstract
This paper presents a combination approach which fusing the estimates of forward backward pursuit (FBP) and backtracking-based adaptive orthogonal matching pursuit (BAOMP) to approximate sparse solutions for compressed sensing without the sparsity level as a prior. This algorithm referred to as combination approach for compressed sensing (CACS). It can improve the sparse signal recovery performance in a minimum number of measurements. Numerical experiments for both synthetic and real signals are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to the individual compressed sensing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.