Abstract
This paper proposes a column generation approach based on the Lagrangean relaxation with clusters to solve the unconstrained binary quadratic programming problem that consists of maximizing a quadratic objective function by the choice of suitable values for binary decision variables. The proposed method treats a mixed binary linear model for the quadratic problem with constraints represented by a graph. This graph is partitioned in clusters of vertices forming sub-problems whose solutions use the dual variables obtained by a coordinator problem. The column generation process presents alternative ways to find upper and lower bounds for the quadratic problem. Computational experiments were performed using hard instances and the proposed method was compared against other methods presenting improved results for most of these instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.