Abstract
Collimator systems used in Intensity Modulated Radiation Therapy can form different geometric aperture shapes depending on their physical capabilities. We compare the efficiency of using regular, rotating and dual multileaf collimator (MLC) systems under different combinations of consecutiveness, interdigitation and rectangular constraints. We also create a virtual freeform collimator, which can form any possible segment shape by opening or closing each bixel independently, to provide a basis for comparison. We formulate the problem of minimizing beam-on time as a large-scale linear programming problem. To deal with its dimensionality, we propose a column generation approach. We demonstrate the efficacy of our approach on a set of clinical problem instances. Our results indicate that the dual MLC under consecutiveness constraint yields very similar beam-on time to a virtual freeform collimator. Our approach also provides a ranking between other collimator technologies in terms of their delivery efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.