Abstract

The main ingredient of sunless tanning products is dihydroxyacetone (DHA). DHA reacts with the protein and amino acid composition in the surface layers of the skin, producing melanoidins, which changes the skin colour, imitating natural skin tan caused by melanin. The purpose of this study was to characterise DHA-induced skin colour changes and to test whether we can predict the outcome of DHA application on skin tone changes. To assess the DHA-induced skin colour shift quantitatively, colorimetric and spectral measurements of the inner forearm were obtained before, four hours and 24 hours after application of a 7.5% concentration DHA gel in the experimental group (n = 100). In a control group (n = 60), the same measurements were obtained on both the inner forearm (infrequently sun-exposed) and the outer forearm (frequently sun-exposed); the difference between these two areas was defined as the naturally occurring tan. Skin colour shifts caused by DHA tanning and by natural tanning were compared in terms of lightness (L*), redness (a*) and yellowness (b*) in the standard CIELAB colour space. Naturalness of the DHA-induced skin tan was evaluated by comparing the trajectory of the chromaticity distribution in (L*, b*) space with that of naturally occurring tan. Twenty-four hours after DHA application, approximately 20% of the skin colour samples became excessively yellow, with chromaticities outside the natural range in (L*, b*) space. A principal component analysis was used to characterise the tanning pathway. Skin colour shifts induced by DHA were predicted by a multiple regression on the chromaticities and the skin properties. The model explained up to 49% of variance in colorimetric components with a median error of less than 2 ΔE. We conclude that the control of both the magnitude and the direction of the colour shift is a critical factor to achieve a natural appearance.

Highlights

  • Skin tanning is popular in most western cultures [1], despite the known health risks of UV radiation [2]

  • Our main finding is that, while the trajectory of a natural tan is characterised by a decrease in lightness without an increase in yellowness, the direction of skin colour change induced by DHA follows a straight line in the lightness vs. yellowness diagram, leading to an excess of yellowness for a particular lightness level

  • Our main finding is that the direction of the skin colour change induced by DHA follows a straight line in the lightness vs. yellowness (L, b ) diagram, leading to an excess of yellowness for low lightness levels (Fig 4A), while the trajectory of a natural tan is characterised by a curvilinear relationship between lightness and yellowness, with a maximum yellowness at a lightness of 50

Read more

Summary

Introduction

Skin tanning is popular in most western cultures [1], despite the known health risks of UV radiation [2]. One way to mitigate the health risks associated with UV exposure is the use of sunless tanning products.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call