Abstract
The detection of ultralow or nonvolatile target analytes remains a significant challenge for artificial olfactory systems even after decades of development, which severely limits their widespread application. To overcome this challenge, an artificial olfactory system based on a colorimetric hydrogel array is constructed for the first time as a universal representative. As an effective extension of conventional artificial olfactory systems that integrates the merits of its predecessors, the proposed system accurately mimics olfactory mucosa and specific odorant binding proteins using hydrogels endowed with specific colorimetric reagents for the detection of hypochlorite, chlorate, perchlorate, urea, and nitrate. Therefore, the proposed system is capable of detecting and discriminating between these five airborne improvised explosive microparticulates with a detection limit as low as 39.4 pg. Additionally, the system demonstrates good reusability over ten cycles, rapid response time of ≈0.2 s, and excellent discrimination properties, despite significant variation. This proof-of-concept study on colorimetric artificial olfactory systems yields a novel strategy for the direct and discriminative detection of nonvolatile airborne microparticulates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.