Abstract

Structural colors are abundant in nature and bear advantages over pigment-based colors, such as higher durability, brilliance and often physical hydrophobicity, thus underlying their vast potential for technological applications. Recently, biomimetics of complex natural topologies resulting in such effects has been extensively studied, requiring advanced processing and fabrication techniques. Yet, artificial topologies combining structural coloration and hydrophobicity have not been reported. Herein, we present the bottom-up fabrication of short self-assembling peptides as surface covering films, resulting in an easily achievable multilevel morphology of primary structures in a foam-like enclosure, producing structural colors and hydrophobicity. We demonstrate simple techniques allowing controlled coloration of different surfaces while maintaining an >100° water contact angle (WCA). The new artificial topology is much simpler than the natural counterparts and is not limited to a specific peptide, thus allowing the design of modular materials with unparalleled multifunctionalities and potential for further tuning and modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.